Solving Variational Inequality Problems via Smoothing-Nonsmooth Reformulations

نویسندگان

  • Defeng Sun
  • Liqun Qi
چکیده

It has long been known that variational inequality problems can be reformulated as nonsmooth equations. Recently, locally high-order convergent Newton methods for nonsmooth equations have been well established via the concept of semismoothness. When the constraint set of the variational inequality problem is a rectangle, several locally convergent Newton methods for the reformulated nonsmooth equations can aslo be globalized. In this paper, our main aim is to provide globally and locally high-order convergent Newton methods for solving variational inequality problems with general constraints. To achieve this, we first prove via convolution that these nonsmooth equations can be well approximated by smooth equations, which have desirable properties for the design of Newton methods. We then reformulate the variational inequality problems as equivalent smoothing-nonsmooth equations and apply Newton-type methods to solve the latter systems, and so the variational inequality problems. Stronger convergence results have been obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothing-Nonsmooth Reformulations of Variational Inequality Problems

It has long been known that variational inequality problems can be reformulated as nonsmooth equations. Recently, locally high-order convergent nonsmooth Newton methods for nonsmooth equations have been well established via the concept of semismoothness. In this paper, we focus our discussions on a way of globalizing nonsmooth Newton methods based on a smoothing-nonsmooth reformulation of nonsm...

متن کامل

A Descent Method for Nonsmooth Variational Inequalities via Regularization

in this paper we propose a descent method for solving variational inequality problems where the underlying operator is nonsmooth, locally Lipschitz, and monotone over a closed, convex feasible set. The idea is to combine a descent method for variational inequality problems whose operators are nonsmooth, locally Lipschitz, and strongly monotone, with the Tikonov-Browder regularization technique....

متن کامل

Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities

The smoothing Newton method for solving a system of nonsmooth equations F (x) = 0, which may arise from the nonlinear complementarity problem, the variational inequality problem or other problems, can be regarded as a variant of the smoothing method. At the kth step, the nonsmooth function F is approximated by a smooth function f(·, εk), and the derivative of f(·, εk) at xk is used as the Newto...

متن کامل

A Smoothing Trust Region Filter Algorithm for Nonsmooth Least Squares Problems

We propose a smoothing trust region filter algorithm for nonsmooth nonconvex least squares problems. We present convergence theorems of the proposed algorithm to a Clarke stationary point or a global minimizer of the objective function under certain conditions. Preliminary numerical experiments show the efficiency of the proposed algorithm for finding zeros of a system of polynomial equations w...

متن کامل

A Modified Levenberg-Marquardt Method for Nonsmooth Equations with Finitely Many Maximum Functions

For solving nonsmooth systems of equations, the Levenberg-Marquardt method and its variants are of particular importance because of their locally fast convergent rates. Finitely manymaximum functions systems are very useful in the study of nonlinear complementarity problems, variational inequality problems, Karush-Kuhn-Tucker systems of nonlinear programming problems, and many problems in mecha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999